Improving Network Understanding

Rüdiger Birkner

PhD Defense September, 27 2021

THE ARPA NETWORK

DEC 1969

4 NODES

Over the years, the Internet has seen tremendous growth

		ARPANET (1969)	Internet (2021)
	size	4 nodes	70000 networks
t	raffic	kbps	Tbps
	JSE CASE	remote access	collaboration entertainment shopping
			• • •

This dissertation:

How can we assist network operators in managing their network safely and reliably?

Network understanding is a manual and time-consuming task

data access

rudimentary tools

low-level data

distributed across the network

data overload

hundreds of devices

Tbps of traffic

more than 900k destinations

Assisting network operators through automated network understanding

Forwarding Behavior

Network Validators

Config2Spec

[NSDI'20]

Configuring a network is an indirect process

Configuring a network is an indirect process

LUG

Understanding all the policies a network enforces, is an extremely cumbersome and difficult process

Config2Spec helps operators understand the policies their network configuration enforces

Config2Spec relies on a combination of data plane analysis and control plane verification

data plane analysis

control plane verification

data plane analysis

control plane verification

The network specification is the intersection of the policies that hold for every concrete environment

data plane analysis

control plane verification

The network specification is the set of policies that the verifier determined to hold for the failure model

Config2Spec leverages their individual strengths

approach data plane analysis

control plane verification

all policies for one concrete env.

one policy for the entire failure model

good at

quickly pruning the candidate set

verifying a small candidate set

Config2Spec mines the network's full specification from its configuration and the required failure tolerance

Config2Spec can be improved further using three domain-specific techniques

policy trimming

policy-aware selection

policy grouping

We fully implemented Config2Spec and show its practicality

Implementation

5k lines of Python and Java

using Batfish and Minesweeper

Methodology

generated configs using NetComplete

employing OSPF, BGP

for a small, medium, and large network

with 33, 70, and 158 routers

For failure models with few concrete environments, data plane analysis on its own provides fastest progress

For failure models with a high failure bound, policy trimming reduces the candidate space significantly

Config2Spec mines the specification for realistic networks in few hours

Config2Spec is useful beyond network understanding

adoption of validation tools

checking the correctness of the configs

configuration streamlining

synthesising semantically-equivalent configs

what-if analysis

analysing the impact of a config change

How can we assist network operators in managing their network safely and reliably?

by improving network understanding!

Tomorrow's network understanding

Noisy data What if the data is incomplete or wrong?

detect anomalies/bugs, clean the data

Rich specifications What characteristics does a specification need?

dynamic specifications, control-plane policies

More input data Can we find additional insights by combining data?

new data sources, network provenance

Forwarding Behavior

Network Validators

Config2Spec

[NSDI'20]

Net2Text

[NSDI'18]

Metha

[NSDI'21]

Thesis Publications

[NSDI'18]

Rüdiger Birkner, Dana Drachsler Cohen, Laurent Vanbever, and Martin Vechev Net2Text: Query-Guided Summarization of Network Forwarding Behaviors USENIX NSDI 2018. Renton, WA, USA

[NSDI'20]

Rüdiger Birkner, Dana Drachsler Cohen, Laurent Vanbever, and Martin Vechev Config2Spec: Mining Network Specifications from Network Configurations USENIX NSDI 2020. Santa Clara, CA, USA

[NSDI'21]

Rüdiger Birkner*, Tobias Brodmann*, Petar Tsankov, Laurent Vanbever, and Martin Vechev

Metha: Network Verifiers Need To Be Correct Too!

USENIX NSDI 2021. Online

^{*}These authors contributed equally to this work

Supplemental Publications

[SOSR'17a] Rüdiger Birkner, Arpit Gupta, Nick Feamster, and Laurent Vanbever

SDX-Based Flexibility or Internet Correctness? Pick Two!

ACM SOSR 2017. Santa Clara, CA, USA

[SOSR'17b] Robert MacDavid, Rüdiger Birkner, Ori Rottenstreich,

Arpit Gupta, Nick Feamster, and Jennifer Rexford

Concise Encoding of Flow Attributes in SDN Switches

ACM SOSR 2017. Santa Clara, CA, USA

[SIGCOMM'21] Tibor Schneider, Rüdiger Birkner, and Laurent Vanbever

Snowcap: Synthesizing Network-Wide Configuration Updates

ACM SIGCOMM 2021. Online